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A STABLE AND CONSERVATIVE INTERFACE TREATMENT OF ARBITRARY

SPATIAL ACCURACY*

MARK H. CARPENTER t, JAN NORDSTR(_M _t, AND DAVID GOTTLIEB§

Abstract. Stable and accurate interface conditions arc derived for the linear advection-diffusion equa-

tion. The conditions are functionally independent of the spatial order of accuracy and rely only on the form of

the discrete operator. Wc focus on high-order finite-difference operators that satisfy the summation-by-parts

(SBP) property. Wc prove that stability is a natural consequence of the SBP operators used in conjunction

with the new boundary conditions. In addition, we show that the interface treatments arc conservative.

New finite-difference operators of spatial accuracy up to sixth order are constructed: these operators

satisfy the SBP property. Finite-difference operators are shown to admit design accuracy (p_h-ordcr global

accuracy) when (p- 1)th-ordcr stencil closures arc used near the boundaries if the physical boundary con-

ditions are implemented to at least p_h-order accuracy. Stability and accuracy arc demonstrated on the

nonlinear Burgers' equation for an twelvc-subdomain problem with randomly distributed interfaces.

Key words, high-order finite-difference, numerical stability, interface conditions, summation-by-parts

Subject classification. Applied and Numerical Mathematics

1. Introduction. Higher order and spectral schemes are ideally suited for resolving problems for which

high resolution is essential. Computational acroacoustics (CAA) and computational electromagnetics (CEM)

are two such fields that require high accuracy to resolve the vastly disparate length and time scales involved.

High-order (spectral) schemes easily outperform low-order schemes on simple problems in which the physical

domain is smoothly mapped onto the computational space. The spatial convergence rates of these schemes

allow satisfactory results on relatively coarse grids.

At least two fundamental obstacles presently limit the use of high-order schemes. The first one is the

lack of nonlinear robustness exhibited by high-order formulations. Under resolved features in the solution

and inappropriate numerical and physical boundary conditions are the primary causes. A second limitation

is thc difficulty in applying high-order formulations to complex geometries. Often, the generation of a grid

around a complex configuration is the most difficult aspect of the solution procedure. Furthcr constraint

of the grids so that they arc smooth to higher order (necessary to attain design accuracy for high-order

methods) severely complicates grid generation around complex configurations.

Many high-order practitioners advocate a fully unstructured approach to grid generation. This approach

simplifies the grid-generation procedure considerably for complex configurations. Finite-clement techniques

are an example of the fully unstructured schemes that arc routinely used on complex geometries. An

alternative to fully unstructured methods is the scmistructured approach, in which the solution domain

*This research was supported in part by the National Aeronautics and Space Administration under NASA Contract Nos.

NAS1-19480 and NAS1-97046 while the second and third authors were in residence at the Institute for Computer Applications

in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-2199.

tAerodynamic and Acoustic Methods Branch, NASA Langley Research Center, Hampton, VA 23681-2199. E-mail:

m. h. carpenter_larc, nasa. gov.

$Computational Aerodynamics Dept., FFA, The Aeronautical Research Institute of Sweden, Bromma, Sweden. E-mail:

nrn3_ffa.se.

§Division of Applied Mathematics, Brown University, Providence, RI 02912. Work is supported by AFOSR grant F49620-

96-1-0150 and by NSF grant DMS-9500814. E-mail: dig@cfm.brown.edu.



is broken into the union of piecewise smooth subdomains. Each subdomain is discretized with a stable

formulation, and the resulting multiple domains are patched together globally. This technique has been

successfully used by Kopriva [1], and more recently by Hesthaven and Gottlicb [2].

The approach for designing int('rface conditions developed in this work is equally valid for the unstruc-

tured and semi-structured approaches in multiple spatial dimensions. The interface conditions are determined

entirely by accurate left and right state data along the interface, and do not depend on the source of the

data. For simplicity, however, we focus on the interface matching conditions necessary to maintain stability

and accuracy in one spatial dimension. We demonstrate the technique for both spectral and high-order

formulations.

In section 2, we defne and describe scmidiscrete operators that satisfy the SBP convention. In section

3, wc introduce new interface boundary conditions for multiple domains. In section 4, wc show that the new

conditions arc conservative across interfaces. In section 5, wc consider specific examples of the stability and

accuracy of finite-difference schemes. In section 6, wc present the conclusions. Finally, in the appendix wc

present the stencils used for fourth- and sixth-order finite-difference schemes.

2. Spatial Discretizations. The stable interface conditions presented in this work are valid for spa-

tial discrctizations of arbitrary accuracy. To achieve this generality, the spatial discretizations must bc of

a specific form. Fortunately, most numerical schemes can be put into the required form with only mi-

nor modifications. To bc more precise wc consider discrete spatial derivative operators with the following

properties:

2.1. First-derivative properties.

1. The first derivative operator defining the numerical derivative ux = [(_)0, ..., (_)N] T is

Pux - Qu = 0

(2.1) Pv,, - Qv = PTe,

Dv
where u = [u0(t), ul (t), ..., Ug (t)] T, v = [V(Xo, t), ..., V(ZN, t)] T and v,, = [(_)0, ..., (o_)N] T. (The

vector v is the exact solution.) The truncation error Te satisfies ITel = O(Ax) "_ where the quantity

Ax is defined as the maximum distance between any two neighboring grid points.

2. The matrix P is symmetric and positive definite (Ax)p I < P <_ (Ax)q I where p and q arc

independent of N with p > 0 and q > 0.

3. The matrix Q is nearly skew symmetric and satisfies the property Q + QT __ D, where the diagonal

1 andmatrix D has the form d_,i -- [-1,0,...,0, 1] for i = 0,1,...N. Furthermore, Q0,0 -

QN,N= ½.
A spatial operator in the form of equation (2.1), which satisfies properties 1 through 3, is referred to as

an SBP operator [3]. All SBP operators automatically lead to an energy estimate for periodic solutions to

the linear advection-diffusion equation. In the finite-domain case, an energy estimate exists when an SBP

operator is combined with specific boundary treatments.

Discretization operators that satisfy the SBP framework are remarkably general. Kreiss and Schercr [3]

first suggested the use of SBP spatial operators in the context of second-order central-difference schemes.

In Olsson [4][5][6] and Strand [7], high order finite difference operators arc constructed based on spatial

operators of SBP type. These resulting schemes are strictly stable which means that the growth rate of the

analytic and semi-discrete solution is identical.

The precise properties of the matrices P and Q provide a constructive means of formulating boundary

closures. A discrctization begins with a parametcrization of several points near the boundary of the required



accuracy.Theparametersarethenadjustedsothat theymatchthepreciserequirementsof theP and Q

matrices. Strand [8] used the SBP approach to construct stable fourth- and sixth-order central-differencing

schemes with boundary closures of the appropriate order. Carpenter, Gottlieb, and Abarbancl [9] extended

the SBP formalism to compact implicit operators (fourth-order Pade' operators); Carpenter and Gottlieb [10]

showed that spectral formulations (Galerkin and collocation) can be cased in the SBP framework. Finally,

Carpenter and Otto [11] showed that the SBP schemes have a natural intcrface property, and they used this

property to derive a class of multiple-domain schemes referred to as "cyclo-difference" schemes. (The earlier

work [11] required strong imposition of interface data, whereas the present formulation requires only weak

imposition).

The SBP schemes naturally arise with centered approximations, for which the spatial operator is skew

symmetric. A more general class of schemes could be formulated in the form

(2.2) d__uu= p-1 (Q + T) u
dx

where the matrix T is symmetric negative definite. The general formulation includes the entire class of

central and upwind schemes. The upwind schemes arc automatically stable and accurate because they arc

obtained by adding a symmetric high-order diffusion operator to a stable and accurate SBP formulation. We

focus, therefore, on the original SBP definition which includes central, compact, and spectral formulations.

An approach similar to that used on the first-derivative operator can be used for the second-derivative

operator. For example, one can seek two positive-definite matrices L and R such that

v_x - L-1Rv = O(Ax) '_

An obvious choice is to take L = P and R = Qp-1Q so that the second-derivative operator is obtained by

repeated differentiation with the first-derivative operator. For spectral discrctizations, this process of differ-

entiation is a natural consequence of the polynomial-based discretization technique. This same assumption

for finite-difference techniques is acceptable but less desirable than other, more compact formulations. A

second derivative formed from two first-derivative operators is unnecessarily wide and inaccurate and can

lead to odd-even mode decoupling. For this reason, wc seek a second-derivative operator with the following

properties:

2.2. Second-derivative properties.

1. The second-derivative operator that defines uzz is

Puxx - (-ST M + D)Su = 0

(2.3) Pvxx - (-STM + D)Sv = PTe2.

where the diagonal matrix D has the form di,i = [-1,0, ...,0, 1], i = 0, 1, ...N

2. The matrix M is positive definite:

N with m > 0 and n > 0.

3. The matrix S is of the form

1

(2.4) s=

(Ax) m I < M < (Ax) n I , where m and n are independent of
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0 1 0

0 1 0
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where

Sulo = + o(a.y

(2.5) sutN = v.(xN) + o(zxz)

The matrix S is the idcntity matrix (scaled by the grid spacing) where a discrete representation of

the first derivative replaces the first and last rows.

4. The matrix P is that used in the first-derivative operator.

Explicit forms of the matrices S and M are given in the appendix for a second-order explicit discretiza-

tion. In addition, the matrix S is presented up to sixth order.

3. Interface Boundary Conditions for Multiple Domains. Consider the linear advection-diffusion

equation

(3.1) OU OU O2U
c9---_+ a--_x = e-_gx2, Ixl <_ l, t >0.

Suppose that the equation is discretized by a multi-domain technique such that the interval is divided

arbitrarily into two subintervals - 1 _< x < xi and xi < x < 1. On each subinterval, a discretization is used

that satisfies the SBP properties 1 through 3. We propose implementing the interface boundary conditions

by using a penalty treatment of the form

Ptu, + aQtu = eRtu + aleli(Ul:_=._ , - v[:_=_,) + a2eeli[(Dtu){ .... - (D,-v)l_:=:_,]

(3.2) PrVt + aQrv = eR_v + aaeri(vlx=,, - ul_=x,) + aaee,i[(Drv)l_=x, - (Dlu)lx=_,]

whcrc u is a vector of length M u = [UO(t),Ul(t),...,UM(t)] T defined in the left domain at the points

xt = [x0 = --1,Xl,...,XM = Xi)] T and eli = [0,...,0, 1]T is of dimension M. In the right domain, v =

[vo(t),vl(t), ...,vN(t)] T is defined at the points xa = [x0 = zi,xl .... ,xN = 1]T and eri = [1,0, ...,0] T is of

dimension N.

The second-derivative matrices Pt-IRL and P_-IRr, as well as the first-derivative matrices Pt-lQt and

P_IQr, are defined as in section 2. Thc matrices Dl and Dr are any operators that approximate the first

derivative to O(Ax) TM. The obvious first choice would be to use Pt-lQt and P_-IQr, but this choice is not

essential for accuracy or stability. (In equation (3.2) wc have ignored thc physical boundary conditions at

x = 1 and x = -1 for the sake of simplicity. )

THEOREM 3.1. Consider the scheme (3.2) for the advection-diffusion equation (3.1). If the matrices

Pt, Qt,P_, Qr, RL and P_ satisfy the first and second derivative properties of section 2 and

2
(3.3) aa=al-a, aa=as+l, al < a [aa r + 14_L J '

then (3.2) is stable.

In the proof which follows, we havc without loss of generality considered only the interface terms, and

ignored the terms that arise at the physical boundaries. We assume that the physical boundary conditions

arc implemented by stable and accurate numerical procedures. (Scc Hesthavcn and Gottlicb [2] for a possible

implementation).

PROOF: The proof is based on a simple energy estimate. By premultiplying the equations by the vectors

u T and vT, respectively, and adding we obtain

 [llull , ÷ llvll  ] = - aQt)u + - aQ,,)v2uT (eRt 2vT(eRr



-4- 20.3Vi(V i -- Ui) "4- 2eo'4vi[(Drv)i - (Dlu)i]

where Itull_, = uTpzu, and we have defined ui, vi, (Dlu) i, and (Dlv)i as u[_=x_, v[ ..... (Dlu)]_ .... and

(Dry) I_=_,, respectively. The second-derivative properties of section 2 lead to

(3.4) uT nlu < -oq(Dlu)2i + ui(Dlu)i

(3.5) vT/_v <_ -a,.(D,.v)2i - vi(D,,v)_

where the constants c_l and C_r are positive.

By using the first-derivative properties of section 2 and equations (3.4) and (3.5) and neglecting the

physical boundary terms leads to

d 2 2 wTBwi
(3.6) d-_[Jlullp,+ Ifvllp=]_<

where w_ = [ui, vi, (Dlu) i, (D_v)i], and the boundary matrix B defined by

[ (--a "+-20.1) --(o"1 +a3) e(1 +_r2) --e_2--((71 q- or3) a q- 20"3 --e0.4 ¢(--1 + a4)
(3.7) B =

e(1 + 0.2) -_a4 -2ml 0

L -ecr2 e(-1 + o4) 0 -2ca,-

Straightforward (though tedious) algebra shows that conditions (3.3) yield a non-positive definite matrix B,

thus proving stability. Details are presented in Appendix I.

In practice, the values of al through a4 are determined as follows. Thc parameters a_ and az are

functions from the numerical method and the chosen grid. The viscous contribution in the constraint

a 1
equation al _< _ - e [-g_-t4a_+ --g_laa_,jis minimized for 0.2 =- a_+a,-a_, yielding the expression O" 1 __< _ -- tY[_].

The value 0.1 determines the dissipation at the interface, and also influences the effective CFL of the numerical

scheme. Values of 6rl in the range - 1 _< al < 0 provide a compromise between adequate levels of dissipation,

and acceptable numerical efficiency.

We have shown that the linking of two domains at an interface with the interface conditions prescribed

in Theorem 3.1 is stable in a semidiscrete sense for specific values of the penalty parameters al through at.

The basic methodology can be extended to an arbitrary number of subdomains without complication. The

only constraint is that the numerical method must satisfy the SBP framework. The methodology does not

rely on subdomain size and does not require the same SBP operator to be used in each domain. In principle,

a finite-difference operator of any order, as well as spectral operators on subdomains of arbitrary size, can

be linked together in a stable manner. Practical details on how to chose al through at are included in the

results section (Section 6).

In section 2, we presented the general form of second-derivative operators appropriate for this work. We

then noted two specific derivative operators that satisfy this form. We now show that both choices for the

matrices Rz (and R_) suggested in section 2 satisfy conditions (3.4) and (3.5) of Theorem 3.1. We start with

the first option (i.e. R_ = QlPl-lQt). In this case, the first derivative matrix in (3.2) is Dl = Pl-XQl. Thus,

the quantity uTRlu becomes

uT Qlpl-lQlu = uT Qipl-l pip_lQlu

= -(P_-lQl_)rp_(p_-XQlu ) + u,(P_-_Qzu),



where we have used the SBP property Q + QT = D, and have ignored the physical boundary contribution.

We recall now that Pz >_ (Ax)pt so that

uT Rlu = uT QtPt-lQlu

<_ -(Ax)pl](Dtu)[ 2 + ui(Dtu)i

Thus, (3.4) is satisfied with al = (Ax)pl. A similar result holds for P_ with ar = (Ax)pr.

The second choice presented in section 2 for the second-derivative operator P-tR_ is of the form of

equation (2.3):

P-1R l = P-I(--STM + D)S

For the purpose of proving stability, we relate the two matrices Dt = S. (In actuality, only the first and last

rows satisfy Dt = S. They are, however, the only portions of the matrices that enter the proof.)

uT Rlu : -(Su)T MSu --kUi(Su)i

< -(Ax) mlsul 2 + v_(su)_.

Thus, (3.4) is satisfied with al = (Ax) m.

4. Conservation at the Interface. The Lax-Wendroff theorem [12] addresses the complexities en-

countered in solving nonlinear conservation laws. The theorem states that a convergent numerical approxi-

mation Ul (x, t), computed with a consistent and conservative method, converges to a weak solution of the

conservation law. Note that discrete conservation is necessary to satisfy the conditions of the theorem.

A heuristic definition of conservation (commonly encountered by practitioners) describes how the numer-

ical flux function "telescopes" across a domain to the boundaries. The total quantity of a conserved variable

in any region changes only as a result of the flux through the boundaries of the region. We, however, rely on a

broader definition of conservation motivated by the original proof of the Lax-Wendroff theorem. We demand

that the numerical flux telescope across the domain, and that all moments of the flux against an arbitrary

test function telescope across the domain. This additional constraint demands an equivalence between the

weak forms of the continuous and discrete operators.

We begin by discussing conservation in a single domain. Consider the nonlinear equation Ut + Fx = 0

on-1 < x < 1 andt _> 0. Note that in the linear case F -- aU and we obtain (3.1) with e-- 0. To

obtain the weak form of this equation we multiply by an arbitrary test function ¢(x, t) that vanishes on the

boundaries. By integrating with respect to space and time we obtain an integral statement of the original

differential equation:

/_1 ¢Udx,tO _ fot /l (uct + F¢_)dxd, = O
1 1

Now consider the semidiscrete equation given by PUt + QF = 0. Here, we have replaced the spatial

derivative F_ in the continuous case with an SBP derivative operator of order (Ax) _. By multiplying by

the discrete vector ¢(xj) = cT (the discrete analog of integration) and integrating with respect to time, we

obtain

ZdpTpU[to - (uT pc_t + FT O_))d'r -- 0

Thus, the semi-discrete operator satisfies a weak form similar to that of the continuous operator, and asymp-

totically approaches the continuous operator in the limit of infinite spatial resolution. The special form of the



P and Q matrices present in the SBP operators enables the semidiscretc operator to mimic the conservation

property of the continuous operator.

The equivalence between the continuous and semi-discrete operators is more more complicated for mul-

tiple domains. The conservation property of the SBP operator does not necessarily apply at an interface

boundary. Under very mild restrictions, however, the SBP interface operators telescope out to the physical

boundaries, as does the continuous operator. Because conservation is only necessary for the advection terms

in the advection-diffusion equation, we set e = 0 (see equation (3.1)) and prove conservation for a two-domain

discrctization. We prove conservation for a general nonlinear flux. Note that the penalty parameters for this

nonlinear case are designated _1 and &3. The resulting conservation condition obtained in the nonlinear case

is slightly different from that obtained in the linear analysis. This difference results from different scalings

of the penalty parameters.

ov or(u) -_ O is valid on the interval-1 < x <THEOREM 4.1. Assume the nonlinear equation -ff_ ÷ ox - -

1 , t > O, divided arbitrarily into two subintervals -1 <_ x < xi and xi < x < 1. On each subinterval,

a discretization is used that satisfies the SBP framework, and boundary conditions are imposed via penalties

in the form

(4.1)

ut -4-P/-1Q/F(u) = 5lpt-leli[F(u(xi)) - F(v(xi))]

vt + P(1Q_F(v) = &3P(le_[F(v(xi)) - F(u(x_))]

where u = [u0(t), ul(t), ..., uM(t)] T is defined in the left domain at the points XL = [x0 = --1, xl .... , XM = X_]T,

and eli = [0, ..., 0, 1]T is of dimension M, with similar definitions on the right domain. The discrctization

is conservative provided that the stability condition a3 = _1 - 1 is satisfied.

PROOF: For multiple domains, we proceed as shown previously in the single-domain case. Multiplying

equations (4.1) by the vectors cTPI and ¢TPr, respectively, yields the set of equations

cT plut + CTQIF(u) = _16(x_)(F(u(xi) ) - F(v(x_) ) )

cV prvt + ¢TQ_F(v) = _3¢(xi )( F(v(xi ) ) -- F(u(xi) ) )

Using the properties of Ql and Qr we get

cT ptut -- FTQt¢ + ¢(xi)F(u(xi)) = _rl¢(Xi)(F(u(xi) ) -- F(v(xi)))

cT prvt -- FTQ_¢- ¢(xi)F(v(xi)) = 53¢(xi)(F(v(xi)) - F(u(xi)))

By integrating with respect to time and making use of the fact that ¢ is continuous at the interface, we get

/0cTp/uI_ + cTprvI_ = (uTp/(_t + FTQt¢)d7

+ (vrP_¢t + FrQ_¢)dr

+ - 03 - 1)d 

l+ - + 1)aT

Obviously, the condition &3 = &l - 1 eliminates the interface terms from the expression and leaves the

desired weak form of the semidiscrete equation. Thus, the theorem is proved.



5. Accuracy of Boundary Conditions. A significant obstacle in dealing with high-order finite-

difference schemes is the formulation of stable stencils near the boundaries. A uniformly high-order ap-

proximation should be maintained if possible up to the boundary. In most high-order formulations, ensuring

uniform accuracy up to the boundaries is difficult when numerical stability must be maintained. Fortunately,

Gustafsson [13] showed that difference approximations to mixed hyperbolic parabolic equations admit global

design accuracy when a finite number of points (independent of N) are closed with stencils that are less accu-

rate by 1 order. For example, a fourth-order interior discretization will asymptotically recover fourth-order

L2 accuracy with third-order closures near the boundaries.

In this section, we confrm that the physical boundary conditions must be imposed with at least the

design accuracy in the context of interface boundary conditions. We begin by inspecting equation (3.2) and

by defining the truncation error as that error committed by substituting the exact solution into the scheme.

Denote by Vl and Vr the projection of the exact solution in the two domains. Substituting the exact solution

into the first equation in (3.2) yields

0V_
PITI_ = Pt--_- + aQtVl - eRlVl + aleli(Vl_=x, - V ..... ) + a2eli((DIVi)l .... - (DrV_)lz=_,)

with a similar expression in the right domain. The differentiation matrices are accurate to the design order

of the method. Thus, the first three terms to the right of the equality, reduce to the truncation error of the

spatial approximation. (Except for a finite number of points that are lower by 1 order near the interfaces

and the physical boundary). Examining the truncation error from the penalty terms, we observe that V

is smooth across the interface, and Vii - Vri = 0. Thus, we only need that DzVlx=z, and D_V_x=_,

approximate the first derivative to the design order of accuracy. The exact nature of the solution error near

the boundaries is extremely complicated due to the points treated less accurately in that vicinity. More

details will be presented in a future work on this subject. We show by numerical example, however, that

order rcduction occurs when the interface derivative is treated with less than design accuracy. (See Table 5).

5.1. Uniform Grid.. Now we demonstrate that the physical boundary conditions must bc imposed

with accuracy of at least design order to maintain global design accuracy. This condition is a natural

consequence of the overall dependence of the solution on the boundary conditions. The test problem we use

is the Burgers' equation

DU OU 02U

(5.1) o-7 + v o-7 =

with the exact solution

-1 < x < 1,t >0,

x-ct
(5.2) U(x,t) = -atanh(a--_e ) +c,-oc < x <: c_,t < 0.

The solution of (5.1) requires imposition of boundary conditions at each end of the physical domain. We

choose Robin boundary conditions of the form

1 =0x - = 9-1(0;  u(1,t)-5°ul 0X 1 gl(t)

such that the problem is mathematically well-posed. (See Hesthaven and Gottlieb [2] for the constraints

on a, _, ?, and 5). The physical boundary conditions were imposed in penalty form, as described in the

work of Hesthaven and Gottlieb [2]. The time-advancement scheme is the five-stage fourth-order low-storage

Runge-Kutta scheme. The time step was chosen to ensure that the temporal error in the formulation was



smallrelativeto thespatialerror.Thesimulationis runto a physicaltimeof T = 1, and the viscosity is

determined by the value e = 5 10 -1.

Tables 1 to 4 show the results of a grid-refinement study on a single domain with a fourth-order explicit

interior scheme. The accuracy of the boundary closure and of the physical boundary condition arc parameters

in the study. Table 2 shows the results of thc refinement study with a uniformly fourth-order-accurate scheme

(4,4-4-4,4) with the derivative term in the Robins' boundary conditions approximated to O(Ax4). We note

TABLE 5.1

L2 Solution Errors: Convergence rate of uniformly fourth-order sch eme

N LOGloerror Rate

33 -3.847

65 -4.082 2.31

129 -5.239 3.84

257 -6.486 4.14

513 -7.731 4.14

1025 -8.960 4.87

that the convergence rate in Table 1 is fourth order and that the design accuracy is achieved.

Table 2 shows the second study in which boundary closure accuracy is relaxed by one order. The

resulting scheme (3,3-4-3,3) is third order locally at each boundary and fourth order in the interior. (Both

the inviscid and viscous stencils are reduced by one order of accuracy near the boundaries.) The physical

boundary condition is still approximated to O(Ax4).

TABLE 5.2

L2 Solution Errors: Convergence rate of fourth-order scheme with third-order closure at boundaries.

N LOGloerror Rate

33 -3.694

65 -4.797 3.66

129 -5.971 3.90

257 -6.117 3.81

513 -7.276 3.85

1025 -9.455 3.92

We note that the convergence rate in Table 2 asymptotes to fourth order and that the absolute levels of

error are comparable to those obtained using the (4,4-4-4,4) scheme. Again, design accuracy is achieved.

Table 3 shows the third study, in which boundary closure accuracy is relaxed by two orders. The resulting

scheme (2,2-4-2,2) is second order locally at each boundary and fourth order in the interior. (Only the viscous

terms are reduced by two orders of accuracy near the boundaries.) The physical boundary condition is still

approximated to O(Ax4).

We note that the convergence rate in Table 3 asymptotes to third order, which is a reduction in global

accuracy of one order. This behavior is consistent with Gustafsson's [13] theory, specifically, that global

solution accuracy allows a finite number of stencils to bc reduced by one order of accuracy.

Table 4 shows the final study, in which boundary closure accuracy is uniformly fourth-order accurate

(4,4-4-4,4). The physical boundary condition is approximated to O(Ax3), however. The convergence rate in



TABLE 5,3

L2 Solution Errors: Convergence rate of fourth-order scheme with second-order closure at boundaries.

N LOGloerror Rate

33 -2.974

65 -4.074 3.65

129 -5.519 4.80

257 -6.284 2.54

513 -7.048 2.54

1025 -7.898 2.82

Table 4 asymptotes to third order, which is a reduction in global accuracy by one order.

TABLE 5.4

L2 Solution Errors: Convergence rate of uniformly fourth-order scheme, using third-order accurate boundary conditions.

N LOGloerror Rate

33 -3.004

65 -4.002 3.32

129 -4.764 2.53

257 -5.636 2.90

513 -6.531 2.97

1025 -7.898 2.82

This series of tests on the single domain indicates the need to imposc the physical boundary condition

with design accuracy. However, closing the near boundary stencils with an accuracy that is one order

less than the design interior accuracy appears to be sufficient. A similar conclusion was reachcd with a

second-order-accurate schcmc (1-2-1) and second-order physical boundary conditions.

Wc now demonstrate by numerical example that these results generalize to the case of multiple domains.

Table 5 shows a grid-refinement study that compares one and eight spatial domains. The numerical test

problem is the previously describcd Burgers' equation using a value of e = 10 -2. The numerical scheme used

in both cases is the (3,3,3,3-4-3,3,3,3) scheme with physical boundary conditions imposed to an accuracy of

O(Ax4).

TABLE 5.5

L2 Solution Errors: Convergence rate of fourth-order scheme with third-order closure at interfaces, on multiple domain

1 domains 8 domains

N LOGloerror Rate LOGloerror Rate

problem.

97 -2.148 -2.125

193 -3.016 2.88 -3.143 3.38

385 -4.214 3.98 -4.485 4.45

769 -5.372 3.85 -5.656 3.38

1537 -6.505 3.76 -6.866 4.02

3063 -7.664 3.85 -8.055 3.95

10



We note that the convergence rate in Table 5 asymptotes to fourth order, for both the one- and eight-

domain cases. This example demonstrates that design accuracy is achieved with multiple domains so long

as the physical boundary conditions are imposed with design accuracy and the numerical closures near the

interfaces are at most one order of accuracy less than the design accuracy of the interior scheme.
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FIc. 5.1. The Burgers equation solved using a sixth-order scheme with randomly generated interface points.

5.2. Nonuniform Domain. The final problem wc solve is the nonlinear Burgers' equation with un-

equally spaced subdomains and a sixth-order scheme. Details of the numerical discretization arc included in

the appendix. The Burgers' equation in the form of equation (5.1) is solved throughout the domain with a

viscosity parameter of c = 10 -2. The domain is divided into 12 subdomains, each with the same number

of points and a uniform local discretization. The domain interfaces arc placed randomly throughout the

domain. The ratio of maximum to minimum subdomain size is about 15:1. Figure 1 shows the solution at

four different times. The "symbols" at the top of the figure show the positions of the 11 interface points.

The profiles are smooth and monotone for this discretization. Figure 2 shows the logarithm of the solution

error plotted as a function of space on the sequence of five grids.

This problem demonstrates the stability and accuracy of the new interface treatments. The discretiza-

tions asymptote to a convergence rate of sixth order on the sequence of grids. Table 6 shows the convergence

rate of the calculations, for two diffcrent values of the parameter e. The steep gradients are resolved to

high-order on all grids for _ = 10 -2. For ( = 2 10 -3, the two coarsest grids are not yet achieving high-order

accuracy, and two-point grid oscillations exist in the solution. Further reduction of e causes numerical insta-

bility, emanating from the interface location, as the gradients pass the interface. Increasing the robustness

of the interface conditions for marginally resolved/discontinuous cases is the focus of current research.

6. Conclusions. We focus on high-order finite difference schemes, which satisfy the summation-by-

parts (SBP) discretization framework. We show stable and conservativc interface treatments of arbitrary

spatial accuracy for the linear advection-diffusion equation. Problems with multiple domains and abruptly

changing mesh sizes are considered.
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FIe. 5.2. Errors obtained from Burgers equation solved on a sequence of grids with a sixth-order scheme,

TABLE 5.6

L2 Solution Errors: Convergence of sixth-order scheme with twelve subdomains and interfaces distributed randomly.

c = 10-2 e = 210 -3

N LOGloerror Rate LOGloerror Rate

145 -3.090 -1.376

289 -4.641 5.15 -1.865 1.62

577 -5.915 4.22 -3.053 3.95

1153 -7.520 5.33 -4.574 5.05

2305 -9.370 6.15 -5.834 4.18

Finite-difference operators are shown to admit design accuracy (pth-order global accuracy) when p - I th-

order stencil closures are used near boundaries if the physical boundary conditions arc imposed with pth-order

accuracy. Finite-difference operators of up to sixth order arc constructed which satisfy the constraints of the

new interface procedures.

Accurate sixth order calculations are achieved for the nonlinear Burgers equation on a twelve subdomain

problem having randomly distributed interfaces.

REFERENCES

[1] D. A. KOPRIVA, Spectral methods ]or the Euler equations-The blunt body problem revisited, AIAA

Journal, 29, (1991), pp. 1458-1462.

[2] J. S. HESTHAVEN AND D. GOTTLIEB, A Stable Penalty Method for the Compressible Na_der-Stokes

Equations: I. Open Boundary Conditions, SIAM J. Sci. Comput. 17, 3, (1996), pp 579-612.

[3] H.-O. KREISS AND G. SCHERER, Finite element and finite diference methods ]or hyperbolic partial

differential equations, Mathematical Aspects of Finite Elements in Partial Differential Equations,

12



[4] e.

[5] P.
[6] P.
[7] B.

[8] B.

[9] M.

[10] M.

[11] M.

[12] P.

[13] B.

Academic Press, New York, (1974).

OLSSON, High-order difference methods and data-parallel implementation, PhD Thesis, Uppsala

University, Department of Scientific Computing, (1992).

OLSSON, Summation by Parts, Projections, and Stability L Math. Comp., 64, (1995) pp. 1035-1065.

OLSSON, Summation by Parts, Projections, and Stability II, Math. Comp., 64, (1995) pp. 1473-1493.

STRAND, High-Order Difference Approximations for Hyperbolic Initial Boundary Value Problems,

PAD Thesis, Uppsala University, Department of Scientific Computing, (1996).

STRAND, Summation by Parts for Finite Difference Approximations for d/dx, J. Comp. PAy., 110,

No. 1, (1994), pp. 47-67.

H. CARPENTER, D. GOTTLIEB, AND S. ABARBANEL, The Stability of Numerical Boundary Treat-

ments for Compact High-Order Finite-Difference Schemes, J. Comp. PAy., 108, No. 2, (1993), pp.

272-295.

H. CARPENTER AND D. GOTTLIEB, Spectral Methods on Arbitrary Grids, J. Comp. PAy., 129, No.

0234, (1996), pp. 74-86.

H. CARPENTER AND J. OTTO, High-Order Cyclo-Difference Techniques: An Alternative to Finite

Differences J. Comp. Play., 118, (1995), pp. 242-260.

D. LAX AND B. WENDROFF, Systems of Conservation Laws, Comm. Pure Appl. Math, 13, (1960),

pp. 217-237.

GUSTAFSSON, The Convergence Rate for Difference Approximations to Mixed Initial Boundary Value

Problems, Math. Comp. 29, 130, (1975), pp. 396-406.

Appendix I. Stability. Here wc show the algebra involved in proving THEOREM 3.1. We begin by

restating of the stability condition presented in equation (3.6), governing the total energy of the system:

d 2 2 wTBw,
(.1)  [llullP, + llvllpr] _<

where wi = [ui, vi, (Dtu)i, (Drv)i], and the boundary matrix defined in equation (3.7) is defined by

(.2) B =

(-a + 2al) -(0-1 4- a3) _(1 _- 0"2) -_0"2

-(0"1 -_-0"3) a -4- 20"3 -_0-4 {:(-1 Jr- a4)

c(1 + a2) --(0"4 --2_Cq 0

-_0"2 c(-1 _- O"4) 0 --2ea_

The stability of this matrix is easier to analyze if it is rotated with a similarity transformation. Define

the new vector w = Sw such that:

1

(.3) *=_

U i -- V i

Ui + Vi

(Dtu),- (D,-v) i

(Dtu) i + (D,v) i

ff

-1 0 0 | ui

1 0 0 I v,0 1 -1 (Dlu)_

0 1 1 [(D.v),

The similarity rotation matrix has the property S T -- S-1 as can easily bc verified. The rotation matrix

S can bc used to transform the stability condition defined by equation (3.6) into the following equivalent

condition:

(.4) wTMiw, = wT ST SMiST Sw, = @T i_/I'_v <_ O;

13



where

(.5) M' =

To ensure negative definiteness, every sub-matrix in the matrix )t?/i must be negative definite. We

observe by inspection that (al + 0"3) --< 0 is a necessary condition. Analyzing the 2x2 sub-matrices along the

diagonal, wc obtain the necessary conditions (-o.: + o.3 + a) = 0, and e(-o.2 + o'4 - 1) = 0. Substituting

the equalities (-aa + o.3 %-a) = 0 and (-a2 %-o.4 - 1) = 0 into the matrix h_/_ yields:

(.6) M_=

2(2a: - a) 0 _(2a2 %- 1) e

0 0 0 0

:(2o._+ 1) o -_(_ + o.) <(a_ - _)

A symmetric matrix can bc rotated into diagonal form by an orthogonal matrix, making the condition

of negative semi-definiteness

wTgfT Di(JV¢ <_ O;

where gr is the orthogonal matrix that satisfies (]TDi(] = /_/i. Pre- and post- multiplication of 5_/i by

suitable rotation matrices M_ = R1Tj_IiR1, yield the equivalent condition

wT R1TgfT Di(fRav¢ < 0;

The matrix R:, chosen to yield a diagonal expression for the matrix M_ is

(.7) L1 = 0010i1L3,1 0 1

I_L4,: o L4,3

with

--C(2a2 %- 1)
L3,1 --

2(2a1 - a)

-2c(a_o.2 - ato.2%-ar)

La,: = e(4o._ + 4o.2 + 1) + (4o.1 - 2a)(ar + at)

-(e(2o.2 + 1) %-(-4o.1%- 2a)(ar - at))

L4,3 = e(4a 2 %-4a2 %-1) %-(4a: - 2a)(C_r %-at)

The diagonal elements of M_ are

A: = 2(2a1 - a)

14



,X2=O

A3 : --e(e(4_ + 4°2 + 1) + (4_1 -- 2a)(_r + _))

2(2al - a)

_4 = -4_(_(o2 + 1)2 + _ + (40, - 2a)_r)
_(4._ + 4o_ + 1) + (a_, - 2a)(_ + _)

These eigenvalues must be less than or equal to zero to ensure stability of the interface condition. The

resulting condition of stability is

a a 2 _42 ]_, < _ - _[_ +

Combining this expression with the constraints _r3 = al -a and a4 = a2+ 1 yield the conditions of THEOREM

3.1.

Appendix II. Stencils. We now present the specific form of the stencils that satisfy the SBP stability

requirements, and the accuracy requirements shown necessary in the previous numerical study. At second

order, the discretization matrix for the advcction terms that satisfy the constraint A1 = p-1Q is

1

(.8) A= 2--_ x

where

(,9) P = Az

is

1

1

-1 0 1

-2 2

1

1

2

1
; Q=5

-1 1

-1 0 1

-1 0 1

-1 1

The discretization matrix for the diffusion terms that satisfies the constraint A2 = p-1 (_ST R + D)S

1
(.10) A-

(Ax)2

1 -2 1

I -2 1

1 -2 1

1 -2 1

15



where

(.11)

1
2 -:

I

1

I- -2
2

; D=

-i

0

0

1

and

(.12)

4 2 2

2 10 10

-_ -_ 9
I0 1.99

9 9 9

-1

-1

2 -1

-1 2 -i

-i 19 lO _2_
9 9 9

10 10 2

9 9 9

2 2 4

The matrix R can be shown to be positive definite (and symmetric).

The fourth-order discretization that satisfies the SBP constraints was originally derived in the work of

Strand [8]. The coefficients rl and r2 below are different from those proposed by Strand and are chosen so

that the resulting discrctization A1 = p-1Q has the standard four-point third-order stencil at the first grid

point. The values of rl and r2 arc

(.13)
-(2177v/295369 - 1166427)

rl :
25488

(66195vr5-3_- 35909375)
r2 =

101952

and the matrices P and Q arc

P=Ax

--(216 r2+2160 rl-2125)
12960

(Sl r2+675 r1+415)
540

--(72 r2+720 r1+445)

1440

--(108 r2+756 r1+421)
1296

(81 r2+675 r1+415) --(72 r2+720 r lq-445)

540 1440

--(4104 r2q-32400 r1+11225) (1836 r2-}-145SO r1+7295)
4320 2160

(1836 r2-1-14580 r1+7295) -(4104 r2+32400 rl+12785)
2160 4320

--(216 r2+2160 r1+655) (Sl r2+675 r1+335)

4320 540

--(108 r2+756 r1+421)
1296

-(216 r2+2160 rl-b655)

4320

(81 r2+675 r1+335)

54O

--(216 r2+2160 r1-12085)

12960

(.14)
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and

Q_

(.15

_Z_ --(864 r2+6480 r1+305) (216 r2+1620 r1+725) --(864 r2+6480 r1+3335)
2 4320 540 4320

(664 r2+6480 r1+305) 0 - (664 v2+6480 r1+2315) (108 r2+810 r1+415)
4320 1440 270

--(216 r2-p 1620 ri-_725) (864 r2-P6480 rl-F2315) 0 2(864 r24-6480 r1÷785) --I
540 1440 4320 12

(864 r2-{-6480 r1÷3335) --(108 r2+810 r1÷415) (664 r2-F6480 r 1+785) 0 8 - 1
4320 270 4320 12 12

! -__88 0 8
12 12 12

Only the inflow boundary portion of the matrices P and Q is shown. The outflow coefficients arc the negativc

transpose of the inflow coefficients. The matrix P is symmetric and positive definite.

The discretization matrix for the diffusion terms that satisfies the constraint A2 = p-1 (_STR + D)S

is:

(.16) A- - 1---_
(Ax) 2

35 - 26 19 - 14 I 1
12 3 2 3 12

1_ -5 1 1 - 1
12 3 _ 5 1-_
-_A lq6 - 30 1_ -__21
12 12 12 12 12

- 1 16 --30 166 -1
"_" 1-2 12 12 12

-I I I --5 ii

i--2- 3 2 -3 i-2

11 -14 19 -26 35
12 3 2 3 12

where

(.17) S= 1

25 4 1

1

1

1 4 -3 -4 25

; D=

0

1

The matrix R is too complicated to report here but can be shown to be positive definite. This numerical

scheme is referred to as (3,3,3,3-4-3,3,3,3), which denotes the fact that thc four points nearest to the boundary

are closed with third-order formulas.

The sixth-order discretization that satisfies the SBP constraints was originally derived in the work of

Strand [8]. The coefficients rl, r2, and r3 below are different from those proposed by Strand and are chosen

so that the resulting discretization A1 -- p-1Q has the standard six-point fifth-order stencil at the first grid

point. This choice produces remarkably good stability characteristics at the boundary. The coefficients are

-1

12

(.is) rl = -3.6224891259957

r2 = 96.301901955532

r3 = -609.5813881563
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ThesymmetricP and nearly skew-symmetric Q matrices have the entries A1 = p-1Q, where

(.19) p(1,1) =

p(a,e) =

-(14400r2 + 302400rl - 7420003)

36288000

-(75600r3 + 1497600r2 + 11944800rl - 59330023)

p(1,3) =

p(1,4) --

p(1,5) =

21722800

-(9450r3 + 202050 r2 + 1776600rl - 7225847)
340200

(900r2 + 18900 rl - 649)

226800

(86400r3 + 1828800r2 + 15854400rl - 66150023)

p(1,6) =

3110400

(378000 r3 + 7747200r2 + 65167200rl - 279318239)

188640000

p(2,2) = (302400r3 + 6091200r2 + 49896000rl - 210294289)

p(2,3) =

p(2,4) =

p(2,5) =

7257600

(3780 r3 + 82575r2 + 741825rl - 2991977)

34020

(5400r3 + I04400r2 + 810000rl - 3756643)

129600

-(529200r3 + 11107200r2 + 95508000rl - 400851749)

2419200

(86400r3 + 1828800r2 + 15854400rl - 65966279)
3110400

p(2, 6) =

p(3,3) = -(51300r3 + 1094400r2 + 9585000rl - 39593423)

p(3, 4) =

64800

(120960 r3 + 2584800r2 + 22680000rl - 93310367)

181440

(5400r3 + 104400r2 + 810000rl - 3766003)
p(3, 5) =

p(3, 6) =

p(4,4) =

129600

(900 r2 + 18900rl -- 37217)

226800

-(17100r3 + 364800r2 + 3195000rl -- 13184701)

p(4, 5) =

p(4, 6) =

p(5, 5) =

21600

(3780r3 + 82575r2 + 741825rl - 2976857)

34020

-(1890r3 + 40410r2 + 355320rl - 1458223)
68040

(302400r3 + 6091200r2 + 49896000rl - 213056209)

7257600

-(75600r3 + 1497600r2 + 11944800rl - 54185191)

21722800
p(5, 6) =

p(6,6) =

q(1,1) --

q(1,2) =

-(14400r2 + 302400rl - 36797603)

36288000

(-1)

2

(415800r3 + 8604000r2 + 72954000rl - 283104553)

32659200

q(1,3) = (120960 r3 + 2672640 r2 + 24192000rl - 100358119)

q(1,4) ----

6531840

-(25200r3 + 542400r2 ÷ 4788000rl - 19717139)

403200

18



q(1,5)

q(1,6)

q(2, 2)

q(2,3)

q(2,4)

q(2, 5)

q(2, 6)

q(3, 3)

q(3,4)

q(3, 5)

q(3, 6)

q(4,4)

q(4, 5)

q(4,6)

q(5, 5)

q(5,6)

q(6,6)

(604800r3 + 13363200r2 + 120960000rl - 485628701)

32659200

(41580 r3 + 860400r2 + 7295400rl - 31023481)

3265920
= 0

-(9450000r3 + 200635200r2 + 1747116000rl - 7286801279)

32659200

(21168000r3 + 449049600r2 + 3907008000rl - 16231108387)

32659200

-(165375r3 + 3516300r2 + 30665250rl - 126996371)

453600

(604800r3 + 13363200r2 + 120960000rl - 482536157)

32659200
= 0

-(6993000r3 + 148096800r2 + 1286334000rl - 5353075351)

8164800

(21168000r3 + 449049600r2 + 3907008000rl - 16212561187)

32659200

-(75600r3 + 1627200r2 + 14364000rl - 58713721)

1209600
= 0

-(9450000r3 + 200635200r2 + 1747116000rl - 7263657599)

32659200

(604800r3 + 13363200r2 + 120960000rl - 485920643)

32659200
= 0

(415800r3 + 8604000r2 + 72954000rl - 286439017)

=0
32659200

The matrix P is symmetric and positive definite for this choice of parameters.

The discretization matrix for the diffusion terms that satisfies the constraint A2 = P-I(--STR + D)S

is

(.20) A-
18o (Ax) 2

+812 -3132 +5265 -5080 +2970 -972 +137

+137 -147 -255 +470 -285 +93 -13

-23 +228 -420 +200 +15 -12 +2
-27 270 -490 270 -27 2

where

(.21) s= [ 6 1511234 o:[1o
The matrix R is too complicated to report here but can be shown to be positive definite.
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